97久久精品人人澡人人爽_91无码人妻精品一区二区三_亚洲AV综合色区无码另类小说_久久久久久久综合色一本_无码在线国产在线视频_亚洲一区二区无码aⅤ_干女人视频网站91av在线导航_中文字幕永久免费

Welcome: Puoao Corporation Technology Co.,Ltd
Language: Chinese ∷  English

Industry new

Fast, High Capacity Fiber Transmission Gets Real for Data Centers

Using a bi-directional configuration, engineers at Nokia demonstrated real-time, high capacity signal transmission suitable for coupling adjacent data centers with current compliance standards


SAN DIEGO — A cutting edge, “off-line” signal transmission mechanism, experimentally demonstrated just a few years ago, is now on-line as a real-time bidirectional transmission system.  At OFC 2018, the single-most important annual event in optical communications, being held March 11-15 in San Diego California, a research team from Nokia will report the real-time, bi-directional transmission of 78 interleaved, 400 gigabit per second (Gb/s) channels with a 31.2 terabit per second (Tb/s) fiber capacity.

At twice the 200 Gb/s standard rate found in most applications, the C-band signals were transmitted over a single, 90-kilometer-long single-mode fiber. Such a high transmission capacity and rate would offer a particularly attractive capacity bump to current data center interconnections, where nearby data centers are coupled together to form a single, larger center.

Fundamentally speaking, there are two ways to go about increasing a data center’s capacity: either increase the number of (parallel) fibers through which the data travels, or increase how much data you transmit through existing fibers. While the use of additional fibers is a more straightforward approach (particularly for data centers which usually rent fibers to use), it is expensive both in price and power consumption.

Perhaps unsurprisingly, there is considerable interest in finding ways of increasing the transmission capacity of fibers already in use. As multiplexers (devices that combine multiple signals into one) and transponders become more sophisticated, so do the available signal encoding/decoding processes. Current standards for wavelength division multiplexed (WDM) signals, for instance, can combine up to 96 channels on C band.

The off-line proof-of-principle experiments first demonstrating the high capacity, error-free 400 Gb/s WDM transmission capitalized on a very high spectral efficiency to boost capacity in the fiber. While this is not the first real-time implementation of 400 Gb/s channels, it is the first to be successful with an impressive 8 bit per second-per hertz spectral efficiency.

“So far, three different companies have demonstrated a real-time 400 Gb/s transponder over the last three years, but we are the only ones reporting 400 Gb/s with such high spectral efficiency,” said Thierry Zami, who will be presenting the team’s work. “The spectral efficiency allows us to provide quite a large fiber capacity. So, in this case we claim 31.2 Tb/s, but in practice, without the limitations in terms of number of loading channels in our lab, we could have reached about 38 Tb/s over whole C band. This is really one of the innovative points.”

In addition to using the real-time, commercially available transponders, the setup used components that are compliant with current network standards. After testing the unidirectional transmission configuration, Zami and his team wanted to further improve the resulting Q2 margins, which represent the signal to noise power ratio.

“It was important for us to maintain simple amplification, only based on erbium doped fiber amplifiers, and to use standard fibers,” said Zami. “To increase the system margins observed with the unidirectional set up, we could have decided to make the same unidirectional experiment with slightly larger channel spacing, for instance. But we said, ‘no’ because we wanted to remain compliant as much as possible with the standard grid.”

The team instead developed a bi-directional transmission set up with the same 90-kilometer fiber, where the even and odd 400 Gb/s channels, with the same 50 GHz grid spacing, transmit in opposite directions. For this configuration, they measured Q2 margins at least twice as large as for the unidirectional version. And because it employed two 100 GHz-spaced multiplexers to create the 50 GHz channel spacing, unlike the unidirectional system’s individual 50 GHz multiplexer, it benefits from wider filtering to exhibit better tolerance to frequency detuning.

CONTACT US

Contact: Mr Gu

Phone: 15976963346

Tel: 0756-5221115

Email: sales@puoao.com

Add: Broadview Garden, Whlite Vine Road,Doumen zone, Zhuhai,Guangdong, China

Scan the qr codeClose
the qr code
布尔津县| 东阳市| 武川县| 和顺县| 赤峰市| 勃利县| 台东县| 岑巩县| 乡城县| 伊春市| 临高县| 怀化市| 金川县| 加查县| 元氏县| 安新县| 镇巴县| 磐石市| 上犹县| 衢州市| 阳东县| 兰溪市| 女性| 吐鲁番市| 辉南县| 柳江县| 武夷山市| 遵化市| 岳阳县| 鄱阳县| 曲水县| 增城市| 呼伦贝尔市| 江津市| 甘孜| 阜新市| 冷水江市| 格尔木市| 从化市| 嘉荫县| 子长县|